OPC UA and Apache Druid Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The OPC UA plugin provides an interface for retrieving data from OPC UA server devices, facilitating effective data collection and monitoring.
This plugin allows Telegraf to send JSON-formatted metrics to Apache Druid over HTTP, enabling real-time ingestion for analytical queries on high-volume time-series data.
Integration details
OPC UA
The OPC UA Plugin retrieves data from devices that communicate using the OPC UA protocol, allowing you to collect and monitor data from your OPC UA servers.
Apache Druid
This configuration uses Telegraf’s HTTP output plugin with json
data format to send metrics directly to Apache Druid, a real-time analytics database designed for fast, ad hoc queries on high-ingest time-series data. Druid supports ingestion via HTTP POST to various components like the Tranquility service or native ingestion endpoints. The JSON format is ideal for structuring Telegraf metrics into event-style records for Druid’s columnar and time-partitioned storage engine. Druid excels at powering interactive dashboards and exploratory queries across massive datasets, making it an excellent choice for real-time observability and monitoring analytics when integrated with Telegraf.
Configuration
OPC UA
[[inputs.opcua]]
## Metric name
# name = "opcua"
#
## OPC UA Endpoint URL
# endpoint = "opc.tcp://localhost:4840"
#
## Maximum time allowed to establish a connect to the endpoint.
# connect_timeout = "10s"
#
## Maximum time allowed for a request over the established connection.
# request_timeout = "5s"
# Maximum time that a session shall remain open without activity.
# session_timeout = "20m"
#
## Security policy, one of "None", "Basic128Rsa15", "Basic256",
## "Basic256Sha256", or "auto"
# security_policy = "auto"
#
## Security mode, one of "None", "Sign", "SignAndEncrypt", or "auto"
# security_mode = "auto"
#
## Path to cert.pem. Required when security mode or policy isn't "None".
## If cert path is not supplied, self-signed cert and key will be generated.
# certificate = "/etc/telegraf/cert.pem"
#
## Path to private key.pem. Required when security mode or policy isn't "None".
## If key path is not supplied, self-signed cert and key will be generated.
# private_key = "/etc/telegraf/key.pem"
#
## Authentication Method, one of "Certificate", "UserName", or "Anonymous". To
## authenticate using a specific ID, select 'Certificate' or 'UserName'
# auth_method = "Anonymous"
#
## Username. Required for auth_method = "UserName"
# username = ""
#
## Password. Required for auth_method = "UserName"
# password = ""
#
## Option to select the metric timestamp to use. Valid options are:
## "gather" -- uses the time of receiving the data in telegraf
## "server" -- uses the timestamp provided by the server
## "source" -- uses the timestamp provided by the source
# timestamp = "gather"
#
## Client trace messages
## When set to true, and debug mode enabled in the agent settings, the OPCUA
## client's messages are included in telegraf logs. These messages are very
## noisey, but essential for debugging issues.
# client_trace = false
#
## Include additional Fields in each metric
## Available options are:
## DataType -- OPC-UA Data Type (string)
# optional_fields = []
#
## Node ID configuration
## name - field name to use in the output
## namespace - OPC UA namespace of the node (integer value 0 thru 3)
## identifier_type - OPC UA ID type (s=string, i=numeric, g=guid, b=opaque)
## identifier - OPC UA ID (tag as shown in opcua browser)
## tags - extra tags to be added to the output metric (optional); deprecated in 1.25.0; use default_tags
## default_tags - extra tags to be added to the output metric (optional)
##
## Use either the inline notation or the bracketed notation, not both.
#
## Inline notation (default_tags not supported yet)
# nodes = [
# {name="", namespace="", identifier_type="", identifier="", tags=[["tag1", "value1"], ["tag2", "value2"]},
# {name="", namespace="", identifier_type="", identifier=""},
# ]
#
## Bracketed notation
# [[inputs.opcua.nodes]]
# name = "node1"
# namespace = ""
# identifier_type = ""
# identifier = ""
# default_tags = { tag1 = "value1", tag2 = "value2" }
#
# [[inputs.opcua.nodes]]
# name = "node2"
# namespace = ""
# identifier_type = ""
# identifier = ""
#
## Node Group
## Sets defaults so they aren't required in every node.
## Default values can be set for:
## * Metric name
## * OPC UA namespace
## * Identifier
## * Default tags
##
## Multiple node groups are allowed
#[[inputs.opcua.group]]
## Group Metric name. Overrides the top level name. If unset, the
## top level name is used.
# name =
#
## Group default namespace. If a node in the group doesn't set its
## namespace, this is used.
# namespace =
#
## Group default identifier type. If a node in the group doesn't set its
## namespace, this is used.
# identifier_type =
#
## Default tags that are applied to every node in this group. Can be
## overwritten in a node by setting a different value for the tag name.
## example: default_tags = { tag1 = "value1" }
# default_tags = {}
#
## Node ID Configuration. Array of nodes with the same settings as above.
## Use either the inline notation or the bracketed notation, not both.
#
## Inline notation (default_tags not supported yet)
# nodes = [
# {name="node1", namespace="", identifier_type="", identifier=""},
# {name="node2", namespace="", identifier_type="", identifier=""},
#]
#
## Bracketed notation
# [[inputs.opcua.group.nodes]]
# name = "node1"
# namespace = ""
# identifier_type = ""
# identifier = ""
# default_tags = { tag1 = "override1", tag2 = "value2" }
#
# [[inputs.opcua.group.nodes]]
# name = "node2"
# namespace = ""
# identifier_type = ""
# identifier = ""
## Enable workarounds required by some devices to work correctly
# [inputs.opcua.workarounds]
## Set additional valid status codes, StatusOK (0x0) is always considered valid
# additional_valid_status_codes = ["0xC0"]
# [inputs.opcua.request_workarounds]
## Use unregistered reads instead of registered reads
# use_unregistered_reads = false
Apache Druid
[[outputs.http]]
## Druid ingestion endpoint (e.g., Tranquility, HTTP Ingest, or Kafka REST Proxy)
url = "http://druid-ingest.example.com/v1/post"
## Use POST method to send events
method = "POST"
## Data format for Druid ingestion (expects JSON format)
data_format = "json"
## Optional headers (may vary depending on Druid setup)
# [outputs.http.headers]
# Content-Type = "application/json"
# Authorization = "Bearer YOUR_API_TOKEN"
## Optional timeout and TLS settings
timeout = "10s"
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
Input and output integration examples
OPC UA
-
Basic Configuration: Set up the plugin with your OPC UA server endpoint and desired metrics. This allows Telegraf to start gathering metrics from the configured nodes.
-
Node ID Setup: Use the configuration to specify specific nodes, such as temperature sensors, to monitor their values in real-time. For example, configure node
ns=3;s=Temperature
to gather temperature data directly. -
Group Configuration: Simplify monitoring multiple nodes by grouping them under a single configuration—this sets defaults for all nodes in that group, thereby reducing redundancy in setup.
Apache Druid
-
Real-Time Application Monitoring Dashboard: Use Telegraf to collect metrics from application servers and send them to Druid for immediate analysis and visualization in dashboards. Druid’s low-latency querying allows users to interactively explore system behavior in near real-time.
-
Security Event Aggregation: Aggregate and forward security-related metrics such as failed logins, port scans, or process anomalies to Druid. Analysts can build dashboards to monitor threat patterns and investigate incidents with millisecond-level granularity.
-
IoT Device Analytics: Collect telemetry from edge devices via Telegraf and send it to Druid for fast, scalable processing. Druid’s time-partitioned storage and roll-up capabilities are ideal for handling billions of small JSON events from sensors or gateways.
-
Web Traffic Behavior Exploration: Use Telegraf to capture web server metrics (e.g., requests per second, latency, error rates) and forward them to Druid. This enables teams to drill down into user behavior by region, device, or request type with subsecond query performance.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration