OPC UA and DuckDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider OPC UA and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The OPC UA plugin provides an interface for retrieving data from OPC UA server devices, facilitating effective data collection and monitoring.

This plugin enables Telegraf to write structured metrics into DuckDB using SQLite-compatible SQL connections, supporting lightweight local analytics and offline metric analysis.

Integration details

OPC UA

The OPC UA Plugin retrieves data from devices that communicate using the OPC UA protocol, allowing you to collect and monitor data from your OPC UA servers.

DuckDB

Use the Telegraf SQL plugin to write metrics into a local DuckDB database. DuckDB is an in-process OLAP database designed for efficient analytical queries on columnar data. Although it does not provide a traditional client-server interface, DuckDB can be accessed via SQLite-compatible drivers in embedded mode. This allows Telegraf to store time series metrics in DuckDB using SQL, enabling powerful analytics workflows using familiar SQL syntax, Jupyter notebooks, or integration with data science tools like Python and R. DuckDB’s columnar storage and vectorized execution make it ideal for compact and high-performance metric archives.

Configuration

OPC UA


[[inputs.opcua]]
  ## Metric name
  # name = "opcua"
  #
  ## OPC UA Endpoint URL
  # endpoint = "opc.tcp://localhost:4840"
  #
  ## Maximum time allowed to establish a connect to the endpoint.
  # connect_timeout = "10s"
  #
  ## Maximum time allowed for a request over the established connection.
  # request_timeout = "5s"

  # Maximum time that a session shall remain open without activity.
  # session_timeout = "20m"
  #
  ## Security policy, one of "None", "Basic128Rsa15", "Basic256",
  ## "Basic256Sha256", or "auto"
  # security_policy = "auto"
  #
  ## Security mode, one of "None", "Sign", "SignAndEncrypt", or "auto"
  # security_mode = "auto"
  #
  ## Path to cert.pem. Required when security mode or policy isn't "None".
  ## If cert path is not supplied, self-signed cert and key will be generated.
  # certificate = "/etc/telegraf/cert.pem"
  #
  ## Path to private key.pem. Required when security mode or policy isn't "None".
  ## If key path is not supplied, self-signed cert and key will be generated.
  # private_key = "/etc/telegraf/key.pem"
  #
  ## Authentication Method, one of "Certificate", "UserName", or "Anonymous".  To
  ## authenticate using a specific ID, select 'Certificate' or 'UserName'
  # auth_method = "Anonymous"
  #
  ## Username. Required for auth_method = "UserName"
  # username = ""
  #
  ## Password. Required for auth_method = "UserName"
  # password = ""
  #
  ## Option to select the metric timestamp to use. Valid options are:
  ##     "gather" -- uses the time of receiving the data in telegraf
  ##     "server" -- uses the timestamp provided by the server
  ##     "source" -- uses the timestamp provided by the source
  # timestamp = "gather"
  #
  ## Client trace messages
  ## When set to true, and debug mode enabled in the agent settings, the OPCUA
  ## client's messages are included in telegraf logs. These messages are very
  ## noisey, but essential for debugging issues.
  # client_trace = false
  #
  ## Include additional Fields in each metric
  ## Available options are:
  ##   DataType -- OPC-UA Data Type (string)
  # optional_fields = []
  #
  ## Node ID configuration
  ## name              - field name to use in the output
  ## namespace         - OPC UA namespace of the node (integer value 0 thru 3)
  ## identifier_type   - OPC UA ID type (s=string, i=numeric, g=guid, b=opaque)
  ## identifier        - OPC UA ID (tag as shown in opcua browser)
  ## tags              - extra tags to be added to the output metric (optional); deprecated in 1.25.0; use default_tags
  ## default_tags      - extra tags to be added to the output metric (optional)
  ##
  ## Use either the inline notation or the bracketed notation, not both.
  #
  ## Inline notation (default_tags not supported yet)
  # nodes = [
  #   {name="", namespace="", identifier_type="", identifier="", tags=[["tag1", "value1"], ["tag2", "value2"]},
  #   {name="", namespace="", identifier_type="", identifier=""},
  # ]
  #
  ## Bracketed notation
  # [[inputs.opcua.nodes]]
  #   name = "node1"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #   default_tags = { tag1 = "value1", tag2 = "value2" }
  #
  # [[inputs.opcua.nodes]]
  #   name = "node2"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #
  ## Node Group
  ## Sets defaults so they aren't required in every node.
  ## Default values can be set for:
  ## * Metric name
  ## * OPC UA namespace
  ## * Identifier
  ## * Default tags
  ##
  ## Multiple node groups are allowed
  #[[inputs.opcua.group]]
  ## Group Metric name. Overrides the top level name.  If unset, the
  ## top level name is used.
  # name =
  #
  ## Group default namespace. If a node in the group doesn't set its
  ## namespace, this is used.
  # namespace =
  #
  ## Group default identifier type. If a node in the group doesn't set its
  ## namespace, this is used.
  # identifier_type =
  #
  ## Default tags that are applied to every node in this group. Can be
  ## overwritten in a node by setting a different value for the tag name.
  ##   example: default_tags = { tag1 = "value1" }
  # default_tags = {}
  #
  ## Node ID Configuration.  Array of nodes with the same settings as above.
  ## Use either the inline notation or the bracketed notation, not both.
  #
  ## Inline notation (default_tags not supported yet)
  # nodes = [
  #  {name="node1", namespace="", identifier_type="", identifier=""},
  #  {name="node2", namespace="", identifier_type="", identifier=""},
  #]
  #
  ## Bracketed notation
  # [[inputs.opcua.group.nodes]]
  #   name = "node1"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #   default_tags = { tag1 = "override1", tag2 = "value2" }
  #
  # [[inputs.opcua.group.nodes]]
  #   name = "node2"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""

  ## Enable workarounds required by some devices to work correctly
  # [inputs.opcua.workarounds]
    ## Set additional valid status codes, StatusOK (0x0) is always considered valid
  # additional_valid_status_codes = ["0xC0"]

  # [inputs.opcua.request_workarounds]
    ## Use unregistered reads instead of registered reads
  # use_unregistered_reads = false

DuckDB

[[outputs.sql]]
  ## Use the SQLite driver to connect to DuckDB via Go's database/sql
  driver = "sqlite3"

  ## DSN should point to the DuckDB database file
  dsn = "file:/var/lib/telegraf/metrics.duckdb"

  ## SQL INSERT statement with placeholders for metrics
  table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"

  ## Optional: manage connection pooling
  # max_open_connections = 1
  # max_idle_connections = 1
  # conn_max_lifetime = "0s"

  ## DuckDB does not require TLS or authentication by default

Input and output integration examples

OPC UA

  1. Basic Configuration: Set up the plugin with your OPC UA server endpoint and desired metrics. This allows Telegraf to start gathering metrics from the configured nodes.

  2. Node ID Setup: Use the configuration to specify specific nodes, such as temperature sensors, to monitor their values in real-time. For example, configure node ns=3;s=Temperature to gather temperature data directly.

  3. Group Configuration: Simplify monitoring multiple nodes by grouping them under a single configuration—this sets defaults for all nodes in that group, thereby reducing redundancy in setup.

DuckDB

  1. Embedded Metric Warehousing for Notebooks: Write metrics to a local DuckDB file from Telegraf and analyze them in Jupyter notebooks using Python or R. This workflow supports reproducible analytics, ideal for data science experiments or offline troubleshooting.

  2. Batch Time-Series Processing on the Edge: Use Telegraf with DuckDB on edge devices to log metrics locally in SQL format. The compact storage and fast analytical capabilities of DuckDB make it ideal for batch processing and low-bandwidth environments.

  3. Exploratory Querying of Historical Metrics: Accumulate system metrics over time in DuckDB and perform exploratory data analysis (EDA) using SQL joins, window functions, and aggregates. This enables insights that go beyond what typical time-series dashboards provide.

  4. Self-Contained Metric Snapshots: Use DuckDB as a portable metrics archive by shipping .duckdb files between systems. Telegraf can collect and store data in this format, and analysts can later load and query it using the DuckDB CLI or integrations with tools like Tableau and Apache Arrow.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration