OpenStack and Apache Hudi Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin collects metrics from essential OpenStack services, facilitating the monitoring and management of cloud infrastructures.
Writes metrics to Parquet files via Telegraf’s Parquet output plugin, preparing them for ingestion into Apache Hudi’s lakehouse architecture.
Integration details
OpenStack
The OpenStack plugin allows users to collect performance metrics from various OpenStack services such as CINDER, GLANCE, HEAT, KEYSTONE, NEUTRON, and NOVA. It supports multiple OpenStack APIs to fetch critical metrics related to these services, enabling comprehensive monitoring and management of cloud resources. As organizations increasingly adopt OpenStack for their cloud infrastructure, this plugin plays a vital role in providing insights into resource usage, availability, and performance across the cloud environment. Configuration options allow for customized polling intervals and filtering unwanted tags to optimize performance and cardinals.
Apache Hudi
This configuration leverages Telegraf’s Parquet plugin to serialize metrics into columnar Parquet files suitable for downstream ingestion by Apache Hudi. The plugin writes metrics grouped by metric name into files in a specified directory, buffering writes for efficiency and optionally rotating files on timers. It considers schema compatibility—metrics with incompatible schemas are dropped—ensuring consistency. Apache Hudi can then consume these Parquet files via tools like DeltaStreamer or Spark jobs, enabling transactional ingestion, time-travel queries, and upserts on your time series data.
Configuration
OpenStack
[[inputs.openstack]]
## The recommended interval to poll is '30m'
## The identity endpoint to authenticate against and get the service catalog from.
authentication_endpoint = "https://my.openstack.cloud:5000"
## The domain to authenticate against when using a V3 identity endpoint.
# domain = "default"
## The project to authenticate as.
# project = "admin"
## User authentication credentials. Must have admin rights.
username = "admin"
password = "password"
## Available services are:
## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
## "networks", "nova_services", "ports", "projects", "servers",
## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
## "volumes"
# enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]
## Query all instances of all tenants for the volumes and server services
## NOTE: Usually this is only permitted for administrators!
# query_all_tenants = true
## output secrets (such as adminPass(for server) and UserID(for volume)).
# output_secrets = false
## Amount of time allowed to complete the HTTP(s) request.
# timeout = "5s"
## HTTP Proxy support
# http_proxy_url = ""
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Options for tags received from Openstack
# tag_prefix = "openstack_tag_"
# tag_value = "true"
## Timestamp format for timestamp data received from Openstack.
## If false format is unix nanoseconds.
# human_readable_timestamps = false
## Measure Openstack call duration
# measure_openstack_requests = false
Apache Hudi
[[outputs.parquet]]
## Directory to write parquet files in. If a file already exists the output
## will attempt to continue using the existing file.
directory = "/var/lib/telegraf/hudi_metrics"
## File rotation interval (default is no rotation)
# rotation_interval = "1h"
## Buffer size before writing (default is 1000 metrics)
# buffer_size = 1000
## Optional: compression codec (snappy, gzip, etc.)
# compression_codec = "snappy"
## When grouping metrics, each metric name goes to its own file
## If a metric’s schema doesn’t match the existing schema, it will be dropped
Input and output integration examples
OpenStack
-
Cross-Cloud Management: Leverage the OpenStack plugin to monitor and manage multiple OpenStack clouds from a single Telegraf instance. By aggregating metrics across different clouds, organizations can gain insights into resource utilization and optimize their cloud architecture for cost and performance.
-
Automated Scaling Based on Metrics: Integrate the metrics gathered from OpenStack into an automated scaling solution. For example, if the plugin detects that a specific service’s performance is degraded, it can trigger auto-scaling rules to launch additional instances, ensuring that system performance remains optimal under varying workloads.
-
Performance Monitoring Dashboard: Use data collected by the OpenStack Telegraf plugin to power real-time monitoring dashboards. This setup provides visualizations of key metrics from OpenStack services, enabling stakeholders to quickly identify trends, pinpoint issues, and make data-driven decisions in managing their cloud infrastructure.
-
Reporting and Analysis of Service Availability: By utilizing the metrics collected from various OpenStack services, teams can generate detailed reports on service availability and performance over time. This information can help identify recurring issues, improve service delivery, and make informed decisions regarding changes in infrastructure or service configuration.
Apache Hudi
-
Transactional Lakehouse Metrics: Buffer and write Web service metrics as Parquet files for DeltaStreamer to ingest into Hudi, enabling upserts, ACID compliance, and time-travel on historical performance data.
-
Edge Device Batch Analytics: Telegraf running on IoT gateways writes metrics to Parquet locally, where periodic Spark jobs ingest them into Hudi for long-term analytics and traceability.
-
Schema-Enforced Abnormal Metric Handling: Use Parquet plugin’s strict schema-dropping behavior to prevent malformed or unexpected metric changes. Hudi ingestion then guarantees consistent schema and data quality in downstream datasets.
-
Data Platform Integration: Store Telegraf metrics as Parquet files in an S3/ADLS landing zone. Hudi’s Spark-based ingestion pipeline then loads them into a unified, queryable lakehouse with business events and logs.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration