OpenStack and Google Cloud Monitoring Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin collects metrics from essential OpenStack services, facilitating the monitoring and management of cloud infrastructures.
The Stackdriver plugin allows users to send metrics directly to a specified project in Google Cloud Monitoring, facilitating robust monitoring capabilities across their cloud resources.
Integration details
OpenStack
The OpenStack plugin allows users to collect performance metrics from various OpenStack services such as CINDER, GLANCE, HEAT, KEYSTONE, NEUTRON, and NOVA. It supports multiple OpenStack APIs to fetch critical metrics related to these services, enabling comprehensive monitoring and management of cloud resources. As organizations increasingly adopt OpenStack for their cloud infrastructure, this plugin plays a vital role in providing insights into resource usage, availability, and performance across the cloud environment. Configuration options allow for customized polling intervals and filtering unwanted tags to optimize performance and cardinals.
Google Cloud Monitoring
This plugin writes metrics to a project in Google Cloud Monitoring, which used to be known as Stackdriver. Authentication is a prerequisite and can be achieved via service accounts or user credentials. The plugin is designed to group metrics by a namespace
variable and metric key, facilitating organized data management. However, users are encouraged to use the official
naming format for enhanced query efficiency. The plugin supports additional configurations for managing metric representation and allows tags to be treated as resource labels. Notably, it imposes certain restrictions on the data it can accept, such as not allowing string values or points that are out of chronological order.
Configuration
OpenStack
[[inputs.openstack]]
## The recommended interval to poll is '30m'
## The identity endpoint to authenticate against and get the service catalog from.
authentication_endpoint = "https://my.openstack.cloud:5000"
## The domain to authenticate against when using a V3 identity endpoint.
# domain = "default"
## The project to authenticate as.
# project = "admin"
## User authentication credentials. Must have admin rights.
username = "admin"
password = "password"
## Available services are:
## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
## "networks", "nova_services", "ports", "projects", "servers",
## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
## "volumes"
# enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]
## Query all instances of all tenants for the volumes and server services
## NOTE: Usually this is only permitted for administrators!
# query_all_tenants = true
## output secrets (such as adminPass(for server) and UserID(for volume)).
# output_secrets = false
## Amount of time allowed to complete the HTTP(s) request.
# timeout = "5s"
## HTTP Proxy support
# http_proxy_url = ""
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Options for tags received from Openstack
# tag_prefix = "openstack_tag_"
# tag_value = "true"
## Timestamp format for timestamp data received from Openstack.
## If false format is unix nanoseconds.
# human_readable_timestamps = false
## Measure Openstack call duration
# measure_openstack_requests = false
Google Cloud Monitoring
[[outputs.stackdriver]]
## GCP Project
project = "project-id"
## Quota Project
## Specifies the Google Cloud project that should be billed for metric ingestion.
## If omitted, the quota is charged to the service account’s default project.
## This is useful when sending metrics to multiple projects using a single service account.
## The caller must have the `serviceusage.services.use` permission on the specified project.
# quota_project = ""
## The namespace for the metric descriptor
## This is optional and users are encouraged to set the namespace as a
## resource label instead. If omitted it is not included in the metric name.
namespace = "telegraf"
## Metric Type Prefix
## The DNS name used with the metric type as a prefix.
# metric_type_prefix = "custom.googleapis.com"
## Metric Name Format
## Specifies the layout of the metric name, choose from:
## * path: 'metric_type_prefix_namespace_name_key'
## * official: 'metric_type_prefix/namespace_name_key/kind'
# metric_name_format = "path"
## Metric Data Type
## By default, telegraf will use whatever type the metric comes in as.
## However, for some use cases, forcing int64, may be preferred for values:
## * source: use whatever was passed in
## * double: preferred datatype to allow queries by PromQL.
# metric_data_type = "source"
## Tags as resource labels
## Tags defined in this option, when they exist, are added as a resource
## label and not included as a metric label. The values from tags override
## the values defined under the resource_labels config options.
# tags_as_resource_label = []
## Custom resource type
# resource_type = "generic_node"
## Override metric type by metric name
## Metric names matching the values here, globbing supported, will have the
## metric type set to the corresponding type.
# metric_counter = []
# metric_gauge = []
# metric_histogram = []
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of
## the table
## Additional resource labels
# [outputs.stackdriver.resource_labels]
# node_id = "$HOSTNAME"
# namespace = "myapp"
# location = "eu-north0"
Input and output integration examples
OpenStack
-
Cross-Cloud Management: Leverage the OpenStack plugin to monitor and manage multiple OpenStack clouds from a single Telegraf instance. By aggregating metrics across different clouds, organizations can gain insights into resource utilization and optimize their cloud architecture for cost and performance.
-
Automated Scaling Based on Metrics: Integrate the metrics gathered from OpenStack into an automated scaling solution. For example, if the plugin detects that a specific service’s performance is degraded, it can trigger auto-scaling rules to launch additional instances, ensuring that system performance remains optimal under varying workloads.
-
Performance Monitoring Dashboard: Use data collected by the OpenStack Telegraf plugin to power real-time monitoring dashboards. This setup provides visualizations of key metrics from OpenStack services, enabling stakeholders to quickly identify trends, pinpoint issues, and make data-driven decisions in managing their cloud infrastructure.
-
Reporting and Analysis of Service Availability: By utilizing the metrics collected from various OpenStack services, teams can generate detailed reports on service availability and performance over time. This information can help identify recurring issues, improve service delivery, and make informed decisions regarding changes in infrastructure or service configuration.
Google Cloud Monitoring
-
Multi-Project Metric Aggregation: Use this plugin to send aggregated metrics from various applications across different projects into a single Google Cloud Monitoring project. This use case helps centralize metrics for teams managing multiple applications, providing a unified view for performance monitoring and enhancing decision-making. By configuring different quota projects for billing, organizations can ensure proper cost management while benefiting from a consolidated monitoring strategy.
-
Anomaly Detection Setup: Integrate the plugin with a machine learning-based analytics tool that identifies anomalies in the collected metrics. Using the historical data provided by the plugin, the tool can learn normal baseline behavior and promptly alert the operations team when unusual patterns arise, enabling proactive troubleshooting and minimizing service disruptions.
-
Dynamic Resource Labeling: Implement dynamic tagging by utilizing the tags_as_resource_label option to adaptively attach resource labels based on runtime conditions. This setup allows metrics to provide context-sensitive information, such as varying environmental parameters or operational states, enhancing the granularity of monitoring and reporting without changing the fundamental metric structure.
-
Custom Metric Visualization Dashboards: Leverage the data collected by the Google Cloud Monitoring output plugin to feed a custom metrics visualization dashboard using a third-party framework. By visualizing metrics in real-time, teams can achieve better situational awareness, notably by correlating different metrics, improving operational decision-making, and streamlining performance management workflows.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration