OpenTelemetry and Zabbix Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin receives traces, metrics, and logs from OpenTelemetry clients and agents via gRPC, enabling comprehensive observability of applications.
This plugin sends metrics to Zabbix via traps, allowing for efficient monitoring of systems and applications. It supports automated configuration and data sending based on dynamic metrics collected by Telegraf.
Integration details
OpenTelemetry
The OpenTelemetry plugin is designed to receive telemetry data such as traces, metrics, and logs from clients and agents implementing OpenTelemetry via gRPC. This plugin initiates a gRPC service that listens for incoming telemetry data, making it distinct from standard plugins that collect metrics at defined intervals. The OpenTelemetry ecosystem aids developers in observing and understanding their applications’ performance by providing a vendor-neutral way to instrument, generate, collect, and export telemetry data. Key features of this plugin include customizable connection timeouts, adjustable maximum message sizes for incoming data, and options for specifying span, log, and profile dimensions to tag the incoming metrics. With this flexibility, organizations can tailor their telemetry collection to meet precise observability requirements and ensure seamless data integration into systems like InfluxDB.
Zabbix
The Telegraf Zabbix plugin is designed to send metrics to Zabbix, an open-source monitoring solution, using the trap protocol. It supports various versions from 3.0 to 6.0, ensuring compatibility with recent updates. The plugin facilitates easy integration with the Zabbix ecosystem, allowing users to send collected metrics and monitor system performance seamlessly. Key functionalities include the ability to define the address and port of the Zabbix server, options for prefixing keys, determining the type of data sent (active vs. trapper), and features for low-level discovery (LLD) enabling dynamic item creation based on the metrics observed. Configuration options also allow for autoregistration and resending intervals for LLD data, ensuring that the metrics are up-to-date and relevant. Additionally, the trap format used for sending metrics is structured to facilitate efficient data transfer and processing in Zabbix.
Configuration
OpenTelemetry
[[inputs.opentelemetry]]
## Override the default (0.0.0.0:4317) destination OpenTelemetry gRPC service
## address:port
# service_address = "0.0.0.0:4317"
## Override the default (5s) new connection timeout
# timeout = "5s"
## gRPC Maximum Message Size
# max_msg_size = "4MB"
## Override the default span attributes to be used as line protocol tags.
## These are always included as tags:
## - trace ID
## - span ID
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
# span_dimensions = ["service.name", "span.name"]
## Override the default log record attributes to be used as line protocol tags.
## These are always included as tags, if available:
## - trace ID
## - span ID
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
## When using InfluxDB for both logs and traces, be certain that log_record_dimensions
## matches the span_dimensions value.
# log_record_dimensions = ["service.name"]
## Override the default profile attributes to be used as line protocol tags.
## These are always included as tags, if available:
## - profile_id
## - address
## - sample
## - sample_name
## - sample_unit
## - sample_type
## - sample_type_unit
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
# profile_dimensions = []
## Override the default (prometheus-v1) metrics schema.
## Supports: "prometheus-v1", "prometheus-v2"
## For more information about the alternatives, read the Prometheus input
## plugin notes.
# metrics_schema = "prometheus-v1"
## Optional TLS Config.
## For advanced options: https://github.com/influxdata/telegraf/blob/v1.18.3/docs/TLS.md
##
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections.
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Add service certificate and key.
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
Zabbix
[[outputs.zabbix]]
## Address and (optional) port of the Zabbix server
address = "zabbix.example.com:10051"
## Send metrics as type "Zabbix agent (active)"
# agent_active = false
## Add prefix to all keys sent to Zabbix.
# key_prefix = "telegraf."
## Name of the tag that contains the host name. Used to set the host in Zabbix.
## If the tag is not found, use the hostname of the system running Telegraf.
# host_tag = "host"
## Skip measurement prefix to all keys sent to Zabbix.
# skip_measurement_prefix = false
## This field will be sent as HostMetadata to Zabbix Server to autoregister the host.
## To enable this feature, this option must be set to a value other than "".
# autoregister = ""
## Interval to resend auto-registration data to Zabbix.
## Only applies if autoregister feature is enabled.
## This value is a lower limit, the actual resend should be triggered by the next flush interval.
# autoregister_resend_interval = "30m"
## Interval to send LLD data to Zabbix.
## This value is a lower limit, the actual resend should be triggered by the next flush interval.
# lld_send_interval = "10m"
## Interval to delete stored LLD known data and start capturing it again.
## This value is a lower limit, the actual resend should be triggered by the next flush interval.
# lld_clear_interval = "1h"
Input and output integration examples
OpenTelemetry
-
Unified Monitoring Across Services: Use the OpenTelemetry plugin to collect and consolidate telemetry data from various microservices within a Kubernetes environment. By instrumenting each service with OpenTelemetry, you can utilize this plugin to gather a holistic view of application performance and dependencies in real-time, enabling faster troubleshooting and improved reliability of complex systems.
-
Enhanced Debugging with Traces: Implement this plugin to capture end-to-end traces of requests flowing through multiple services. For instance, when a user initiates a transaction that triggers several backend services, the OpenTelemetry plugin can record detailed traces that highlight performance bottlenecks, giving developers the necessary insights to debug issues and optimize their code.
-
Dynamic Load Testing and Performance Monitoring: Leverage the capabilities of this plugin during load testing phases by collecting live metrics and traces under simulated higher loads. This approach helps to evaluate the resilience of the application components and identify potential performance degradations preemptively, ensuring a smooth user experience in production.
-
Integrated Logging and Metrics for Real-Time Monitoring: Combine the OpenTelemetry plugin with logging frameworks to gather real-time logs alongside metric data, creating a powerful observability platform. For example, integrate it within a CI/CD pipeline to monitor builds and deployments, while collecting logs that help diagnose failures or performance issues in real-time.
Zabbix
-
Dynamic Monitoring of Containerized Applications: Integration of the Zabbix plugin can be leveraged to monitor Docker containers dynamically. As containers are created and removed, the plugin can automatically update Zabbix with the appropriate metrics, ensuring that monitoring stays current without manual configuration. This enhances visibility into resource usage and performance metrics for microservices orchestrated with Kubernetes or Docker Swarm.
-
Real-Time Performance Monitoring with Auto-registration: By enabling the autoregister feature, the plugin can automatically register hosts in Zabbix based on the metrics received. This scenario provides a streamlined approach to add new hosts to monitoring without manual setup, which is particularly useful in environments where hosts may frequently spin up and down, such as serverless architectures or cloud-based deployments.
-
Leveraging Low-level Discovery for Flexible Metric Capture: Using low-level discovery, this plugin allows Zabbix to adaptively create items for metrics that are not predefined. In a scenario involving multiple network devices reporting different performance metrics, the plugin can dynamically inform Zabbix about new metrics as they appear, thus ensuring comprehensive monitoring capabilities that evolve with the monitored systems.
-
Centralized Monitoring of Distributed Systems: The Zabbix plugin can be utilized in a centralized monitoring setup for distributed systems where multiple Telegraf instances are running across different geographical locations. By sending all metrics to a central Zabbix server, organizations can achieve a holistic view of their infrastructure’s performance and make informed operational decisions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration