Salesforce and Apache Hudi Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Salesforce and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Salesforce Telegraf plugin collects crucial metrics regarding the API usage and limits in Salesforce organizations, enabling effective monitoring and management of API consumption.

Writes metrics to Parquet files via Telegraf’s Parquet output plugin, preparing them for ingestion into Apache Hudi’s lakehouse architecture.

Integration details

Salesforce

The Salesforce plugin allows users to gather metrics about API usage limits and the remaining usage within their Salesforce organization. By leveraging Salesforce’s REST API, specifically the limits endpoint, this plugin provides critical insights into how much of the API usage has been consumed and what remains available. This is particularly important for organizations that rely on Salesforce for their operations, as exceeding API limits can interrupt service and hinder business processes. The plugin processes data into a structured format containing maximum and remaining values for various API operations, making it easier for teams to monitor their usage and plan accordingly. The provided configuration allows users to customize their credentials, environment type (sandbox or production), and API version, ensuring flexibility in different deployment scenarios.

Apache Hudi

This configuration leverages Telegraf’s Parquet plugin to serialize metrics into columnar Parquet files suitable for downstream ingestion by Apache Hudi. The plugin writes metrics grouped by metric name into files in a specified directory, buffering writes for efficiency and optionally rotating files on timers. It considers schema compatibility—metrics with incompatible schemas are dropped—ensuring consistency. Apache Hudi can then consume these Parquet files via tools like DeltaStreamer or Spark jobs, enabling transactional ingestion, time-travel queries, and upserts on your time series data.

Configuration

Salesforce

[[inputs.salesforce]]
  ## specify your credentials
  ##
  username = "your_username"
  password = "your_password"
  ##
  ## (optional) security token
  # security_token = "your_security_token"
  ##
  ## (optional) environment type (sandbox or production)
  ## default is: production
  ##
  # environment = "production"
  ##
  ## (optional) API version (default: "39.0")
  ##
  # version = "39.0"

Apache Hudi

[[outputs.parquet]]
  ## Directory to write parquet files in. If a file already exists the output
  ## will attempt to continue using the existing file.
  directory = "/var/lib/telegraf/hudi_metrics"

  ## File rotation interval (default is no rotation)
  # rotation_interval = "1h"

  ## Buffer size before writing (default is 1000 metrics)
  # buffer_size = 1000

  ## Optional: compression codec (snappy, gzip, etc.)
  # compression_codec = "snappy"

  ## When grouping metrics, each metric name goes to its own file
  ## If a metric’s schema doesn’t match the existing schema, it will be dropped

Input and output integration examples

Salesforce

  1. Monitoring API Limit Usage for Scaling Decisions: Use the Salesforce plugin to track API limit usage over time and make informed decisions about when to scale Salesforce resources. By visualizing API consumption patterns, organizations can predict peak usage times, allowing them to proactively adjust their infrastructure or request higher limits as needed. This optimization leads to better performance and less downtime during critical business operations.

  2. Automated Alert System for API Limit Exceedance: Integrate this plugin with a notification system to alert teams when API usage approaches critical limits. This setup not only ensures teams are proactively notified to prevent disruptions, but also helps in maintaining operational continuity and customer satisfaction. The alerts can be configured to trigger automated scripts that either adjust load or inform stakeholders accordingly.

  3. Comparative Analysis of Multiple Salesforces: Leverage the Salesforce Input Plugin to gather metrics from multiple Salesforce instances across different departments or business units. By centralizing this data, organizations can perform comparative analyses to identify departments that may be exceeding their API limits more frequently than others. This allows for targeted discussions and strategies to balance API usage across the organization, leading to better resource allocation and efficiency.

Apache Hudi

  1. Transactional Lakehouse Metrics: Buffer and write Web service metrics as Parquet files for DeltaStreamer to ingest into Hudi, enabling upserts, ACID compliance, and time-travel on historical performance data.

  2. Edge Device Batch Analytics: Telegraf running on IoT gateways writes metrics to Parquet locally, where periodic Spark jobs ingest them into Hudi for long-term analytics and traceability.

  3. Schema-Enforced Abnormal Metric Handling: Use Parquet plugin’s strict schema-dropping behavior to prevent malformed or unexpected metric changes. Hudi ingestion then guarantees consistent schema and data quality in downstream datasets.

  4. Data Platform Integration: Store Telegraf metrics as Parquet files in an S3/ADLS landing zone. Hudi’s Spark-based ingestion pipeline then loads them into a unified, queryable lakehouse with business events and logs.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration