Salesforce and Parquet Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Salesforce and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Salesforce Telegraf plugin collects crucial metrics regarding the API usage and limits in Salesforce organizations, enabling effective monitoring and management of API consumption.

This plugin writes metrics to parquet files, utilizing a schema based on the metrics grouped by name. It supports file rotation and buffered writing for optimal performance.

Integration details

Salesforce

The Salesforce plugin allows users to gather metrics about API usage limits and the remaining usage within their Salesforce organization. By leveraging Salesforce’s REST API, specifically the limits endpoint, this plugin provides critical insights into how much of the API usage has been consumed and what remains available. This is particularly important for organizations that rely on Salesforce for their operations, as exceeding API limits can interrupt service and hinder business processes. The plugin processes data into a structured format containing maximum and remaining values for various API operations, making it easier for teams to monitor their usage and plan accordingly. The provided configuration allows users to customize their credentials, environment type (sandbox or production), and API version, ensuring flexibility in different deployment scenarios.

Parquet

The Parquet output plugin for Telegraf writes metrics to parquet files, which are columnar storage formats optimized for analytics. By default, this plugin groups metrics by their name, writing them to a single file. If a metric’s schema does not align with existing schemas, those metrics are dropped. The plugin generates an Apache Arrow schema based on all grouped metrics, ensuring that the schema reflects the union of all fields and tags. It operates in a buffered manner, meaning it temporarily holds metrics in memory before writing them to disk for efficiency. Parquet files require proper closure to ensure readability, and this is crucial when using the plugin, as improper closure can lead to unreadable files. Additionally, the plugin supports file rotation after specific time intervals, preventing overwrites of existing files and schema conflicts when a file with the same name already exists.

Configuration

Salesforce

[[inputs.salesforce]]
  ## specify your credentials
  ##
  username = "your_username"
  password = "your_password"
  ##
  ## (optional) security token
  # security_token = "your_security_token"
  ##
  ## (optional) environment type (sandbox or production)
  ## default is: production
  ##
  # environment = "production"
  ##
  ## (optional) API version (default: "39.0")
  ##
  # version = "39.0"

Parquet

[[outputs.parquet]]
  ## Directory to write parquet files in. If a file already exists the output
  ## will attempt to continue using the existing file.
  # directory = "."
  
  ## Files are rotated after the time interval specified. When set to 0 no time
  ## based rotation is performed.
  # rotation_interval = "0h"
  
  ## Timestamp field name
  ## Field name to use to store the timestamp. If set to an empty string, then
  ## the timestamp is omitted.
  # timestamp_field_name = "timestamp"

Input and output integration examples

Salesforce

  1. Monitoring API Limit Usage for Scaling Decisions: Use the Salesforce plugin to track API limit usage over time and make informed decisions about when to scale Salesforce resources. By visualizing API consumption patterns, organizations can predict peak usage times, allowing them to proactively adjust their infrastructure or request higher limits as needed. This optimization leads to better performance and less downtime during critical business operations.

  2. Automated Alert System for API Limit Exceedance: Integrate this plugin with a notification system to alert teams when API usage approaches critical limits. This setup not only ensures teams are proactively notified to prevent disruptions, but also helps in maintaining operational continuity and customer satisfaction. The alerts can be configured to trigger automated scripts that either adjust load or inform stakeholders accordingly.

  3. Comparative Analysis of Multiple Salesforces: Leverage the Salesforce Input Plugin to gather metrics from multiple Salesforce instances across different departments or business units. By centralizing this data, organizations can perform comparative analyses to identify departments that may be exceeding their API limits more frequently than others. This allows for targeted discussions and strategies to balance API usage across the organization, leading to better resource allocation and efficiency.

Parquet

  1. Data Lake Ingestion: Utilize the Parquet plugin to store metrics from various sources into a data lake. By writing metrics in parquet format, you establish a standardized and efficient way to manage time-series data, enabling faster querying capabilities and seamless integration with analytics tools like Apache Spark or AWS Athena. This setup can significantly improve data retrieval times and analysis workflows.

  2. Long-term Storage of Metrics: Implement the Parquet plugin in a monitoring setup where metrics are collected over time from multiple applications. This allows for long-term storage of performance data in a compact format, making it cost-effective to store vast amounts of historical data while preserving the ability for quick retrieval and analysis later on. By archiving metrics in parquet files, organizations can maintain compliance and create detailed reports from historical performance trends.

  3. Analytics and Reporting: After writing metrics to parquet files, leverage tools like Apache Arrow or PyArrow to perform complex analytical queries directly on the files without needing to load all the data into memory. This can enhance reporting capabilities, allowing teams to generate insights and visualization from large datasets efficiently, thereby improving decision-making processes based on accurate, up-to-date performance metrics.

  4. Integrating with Data Warehouses: Use the Parquet plugin as part of a data integration pipeline that feeds into a modern data warehouse. By converting metrics to parquet format, the data can be easily ingested by systems like Snowflake or Google BigQuery, enabling powerful analytics and business intelligence capabilities that drive actionable insights from the collected metrics.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration