SNMP and M3DB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The SNMP plugin allows you to collect a variety of metrics from SNMP (Simple Network Management Protocol) agents. It provides flexibility in how data is retrieved, whether collecting single metrics or entire tables.
This plugin allows Telegraf to stream metrics to M3DB using the Prometheus Remote Write protocol, enabling scalable ingestion through the M3 Coordinator.
Integration details
SNMP
This plugin uses polling to gather metrics from SNMP agents, supporting retrieval of individual OIDs and complete SNMP tables. It can be configured to handle multiple SNMP versions, authentication, and other features.
M3DB
This configuration uses Telegraf’s HTTP output plugin with prometheusremotewrite
format to send metrics directly to M3DB through the M3 Coordinator. M3DB is a distributed time series database designed for scalable, high-throughput metric storage. It supports ingestion of Prometheus remote write data via its Coordinator component, which manages translation and routing into the M3DB cluster. This approach enables organizations to collect metrics from systems that aren’t natively instrumented for Prometheus (e.g., Windows, SNMP, legacy systems) and ingest them efficiently into M3’s long-term, high-performance storage engine. The setup is ideal for high-scale observability stacks with Prometheus compatibility requirements.
Configuration
SNMP
[[inputs.snmp]]
agents = ["udp://127.0.0.1:161"]
[[inputs.snmp.field]]
oid = "RFC1213-MIB::sysUpTime.0"
name = "sysUptime"
conversion = "float(2)"
[[inputs.snmp.field]]
oid = "RFC1213-MIB::sysName.0"
name = "sysName"
is_tag = true
[[inputs.snmp.table]]
oid = "IF-MIB::ifTable"
name = "interface"
inherit_tags = ["sysName"]
[[inputs.snmp.table.field]]
oid = "IF-MIB::ifDescr"
name = "ifDescr"
is_tag = true
M3DB
# Configuration for sending metrics to M3
[outputs.http]
## URL is the address to send metrics to
url = "https://M3_HOST:M3_PORT/api/v1/prom/remote/write"
## HTTP Basic Auth credentials
username = "admin"
password = "password"
## Data format to output.
data_format = "prometheusremotewrite"
## Outgoing HTTP headers
[outputs.http.headers]
Content-Type = "application/x-protobuf"
Content-Encoding = "snappy"
X-Prometheus-Remote-Write-Version = "0.1.0"
Input and output integration examples
SNMP
- Basic SNMP Configuration: Collect metrics from a local SNMP agent using typical SNMP community string settings. This setup is ideal for local monitoring of device performance.
- Advanced SNMPv3 Setup: Securely collect metrics using SNMPv3 with authentication and encryption to enhance security. This configuration is recommended for production environments.
- Collect Interface Metrics: Configure the plugin to collect interface metrics from the device’s SNMP table. Utilize fields to capture specific data points for traffic analysis.
- Join Two SNMP Tables: By using translation fields, join data from two SNMP tables for a comprehensive view of correlated performance metrics.
M3DB
-
Large-Scale Cloud Infrastructure Monitoring: Deploy Telegraf agents across thousands of virtual machines and containers to collect metrics and stream them into M3DB through the M3 Coordinator. This provides reliable, long-term visibility with minimal storage overhead and high availability.
-
Legacy System Metrics Ingestion: Use Telegraf to gather metrics from older systems that lack native Prometheus exporters (e.g., Windows servers, SNMP devices) and forward them to M3DB via remote write. This bridges modern observability workflows with legacy infrastructure.
-
Centralized App Telemetry Aggregation: Collect application-specific telemetry using Telegraf’s plugin ecosystem (e.g.,
exec
,http
,jolokia
) and push it into M3DB for centralized storage and query via PromQL. This enables unified analytics across diverse data sources. -
Hybrid Cloud Observability: Install Telegraf agents on-prem and in the cloud to collect and remote-write metrics into a centralized M3DB cluster. This ensures consistent visibility across environments while avoiding the complexity of running Prometheus federation layers.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration