Suricata and Parquet Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Suricata and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin reports internal performance counters of the Suricata IDS/IPS engine and processes the incoming data to fit Telegraf’s format.

This plugin writes metrics to parquet files, utilizing a schema based on the metrics grouped by name. It supports file rotation and buffered writing for optimal performance.

Integration details

Suricata

The Suricata plugin captures and reports internal performance metrics from the Suricata IDS/IPS engine, which includes a wide range of statistics such as traffic volume, memory usage, uptime, and counters for flows and alerts. This plugin listens for JSON-formatted log outputs from Suricata, allowing it to parse and format the data for integration with Telegraf. It operates as a service input plugin, meaning it actively waits for metrics or events from Suricata rather than collecting metrics at predefined intervals. The plugin supports configurations for different metrics versions allowing for enhanced flexibility and detailed data gathering.

Parquet

The Parquet output plugin for Telegraf writes metrics to parquet files, which are columnar storage formats optimized for analytics. By default, this plugin groups metrics by their name, writing them to a single file. If a metric’s schema does not align with existing schemas, those metrics are dropped. The plugin generates an Apache Arrow schema based on all grouped metrics, ensuring that the schema reflects the union of all fields and tags. It operates in a buffered manner, meaning it temporarily holds metrics in memory before writing them to disk for efficiency. Parquet files require proper closure to ensure readability, and this is crucial when using the plugin, as improper closure can lead to unreadable files. Additionally, the plugin supports file rotation after specific time intervals, preventing overwrites of existing files and schema conflicts when a file with the same name already exists.

Configuration

Suricata

[[inputs.suricata]]
  ## Source
  ## Data sink for Suricata stats log. This is expected to be a filename of a
  ## unix socket to be created for listening.
  # source = "/var/run/suricata-stats.sock"

  ## Delimiter
  ## Used for flattening field keys, e.g. subitem "alert" of "detect" becomes
  ## "detect_alert" when delimiter is "_".
  # delimiter = "_"

  ## Metric version
  ## Version 1 only collects stats and optionally will look for alerts if
  ## the configuration setting alerts is set to true.
  ## Version 2 parses any event type message by default and produced metrics
  ## under a single metric name using a tag to differentiate between event
  ## types. The timestamp for the message is applied to the generated metric.
  ## Additional tags and fields are included as well.
  # version = "1"

  ## Alerts
  ## In metric version 1, only status is captured by default, alerts must be
  ## turned on with this configuration option. This option does not apply for
  ## metric version 2.
  # alerts = false

Parquet

[[outputs.parquet]]
  ## Directory to write parquet files in. If a file already exists the output
  ## will attempt to continue using the existing file.
  # directory = "."
  
  ## Files are rotated after the time interval specified. When set to 0 no time
  ## based rotation is performed.
  # rotation_interval = "0h"
  
  ## Timestamp field name
  ## Field name to use to store the timestamp. If set to an empty string, then
  ## the timestamp is omitted.
  # timestamp_field_name = "timestamp"

Input and output integration examples

Suricata

  1. Network Traffic Analysis: Utilize the Suricata plugin to track detailed metrics about network intrusion attempts and performance, aiding in real-time threat detection and response. By visualizing captured alerts and flow statistics, security teams can quickly pinpoint vulnerabilities and mitigate risks.

  2. Performance Monitoring Dashboard: Create a dashboard using the Suricata Telegraf plugin metrics to monitor the health and performance of the IDS/IPS engine. This use case provides an overview of memory usage, captured packets, and alert statistics, allowing teams to maintain optimal operating conditions.

  3. Automated Security Reporting: Leverage the plugin to generate regular reports on alert statistics and traffic patterns, helping security analysts to identify long-term trends and prepare strategic defense initiatives. Automated reports also ensure that the security posture of the network is continually assessed.

  4. Real-time Alert Handling: Integrate Suricata’s alert metrics within a broader incident response automation framework. By incorporating the inputs from the Suricata plugin, organizations can develop smart triggers for alerting and automated response workflows that enhance reaction times to potential threats.

Parquet

  1. Data Lake Ingestion: Utilize the Parquet plugin to store metrics from various sources into a data lake. By writing metrics in parquet format, you establish a standardized and efficient way to manage time-series data, enabling faster querying capabilities and seamless integration with analytics tools like Apache Spark or AWS Athena. This setup can significantly improve data retrieval times and analysis workflows.

  2. Long-term Storage of Metrics: Implement the Parquet plugin in a monitoring setup where metrics are collected over time from multiple applications. This allows for long-term storage of performance data in a compact format, making it cost-effective to store vast amounts of historical data while preserving the ability for quick retrieval and analysis later on. By archiving metrics in parquet files, organizations can maintain compliance and create detailed reports from historical performance trends.

  3. Analytics and Reporting: After writing metrics to parquet files, leverage tools like Apache Arrow or PyArrow to perform complex analytical queries directly on the files without needing to load all the data into memory. This can enhance reporting capabilities, allowing teams to generate insights and visualization from large datasets efficiently, thereby improving decision-making processes based on accurate, up-to-date performance metrics.

  4. Integrating with Data Warehouses: Use the Parquet plugin as part of a data integration pipeline that feeds into a modern data warehouse. By converting metrics to parquet format, the data can be easily ingested by systems like Snowflake or Google BigQuery, enabling powerful analytics and business intelligence capabilities that drive actionable insights from the collected metrics.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration