Tail and Google Cloud Monitoring Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Tail Telegraf plugin collects metrics by tailing specified log files, capturing new log entries in real-time for further analysis.
The Stackdriver plugin allows users to send metrics directly to a specified project in Google Cloud Monitoring, facilitating robust monitoring capabilities across their cloud resources.
Integration details
Tail
The tail plugin is designed to continuously monitor and parse log files, making it ideal for real-time log analysis and monitoring. It mimics the functionality of the Unix tail
command, allowing users to specify a file or pattern and begin reading new lines as they are added. Key features include the ability to follow log-rotated files, start reading from the end of a file, and support various parsing formats for the log messages. Users can customize the plugin through various configuration options, such as specifying file encoding, the method for watching file updates, and filter settings for processing log data. This plugin is particularly valuable in environments where log data is critical for monitoring application performance and diagnosing issues.
Google Cloud Monitoring
This plugin writes metrics to a project in Google Cloud Monitoring, which used to be known as Stackdriver. Authentication is a prerequisite and can be achieved via service accounts or user credentials. The plugin is designed to group metrics by a namespace
variable and metric key, facilitating organized data management. However, users are encouraged to use the official
naming format for enhanced query efficiency. The plugin supports additional configurations for managing metric representation and allows tags to be treated as resource labels. Notably, it imposes certain restrictions on the data it can accept, such as not allowing string values or points that are out of chronological order.
Configuration
Tail
[[inputs.tail]]
## File names or a pattern to tail.
## These accept standard unix glob matching rules, but with the addition of
## ** as a "super asterisk". ie:
## "/var/log/**.log" -> recursively find all .log files in /var/log
## "/var/log/*/*.log" -> find all .log files with a parent dir in /var/log
## "/var/log/apache.log" -> just tail the apache log file
## "/var/log/log[!1-2]* -> tail files without 1-2
## "/var/log/log[^1-2]* -> identical behavior as above
## See https://github.com/gobwas/glob for more examples
##
files = ["/var/mymetrics.out"]
## Read file from beginning.
# from_beginning = false
## Whether file is a named pipe
# pipe = false
## Method used to watch for file updates. Can be either "inotify" or "poll".
## inotify is supported on linux, *bsd, and macOS, while Windows requires
## using poll. Poll checks for changes every 250ms.
# watch_method = "inotify"
## Maximum lines of the file to process that have not yet be written by the
## output. For best throughput set based on the number of metrics on each
## line and the size of the output's metric_batch_size.
# max_undelivered_lines = 1000
## Character encoding to use when interpreting the file contents. Invalid
## characters are replaced using the unicode replacement character. When set
## to the empty string the data is not decoded to text.
## ex: character_encoding = "utf-8"
## character_encoding = "utf-16le"
## character_encoding = "utf-16be"
## character_encoding = ""
# character_encoding = ""
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
## Set the tag that will contain the path of the tailed file. If you don't want this tag, set it to an empty string.
# path_tag = "path"
## Filters to apply to files before generating metrics
## "ansi_color" removes ANSI colors
# filters = []
## multiline parser/codec
## https://www.elastic.co/guide/en/logstash/2.4/plugins-filters-multiline.html
#[inputs.tail.multiline]
## The pattern should be a regexp which matches what you believe to be an indicator that the field is part of an event consisting of multiple lines of log data.
#pattern = "^\s"
## The field's value must be previous or next and indicates the relation to the
## multi-line event.
#match_which_line = "previous"
## The invert_match can be true or false (defaults to false).
## If true, a message not matching the pattern will constitute a match of the multiline filter and the what will be applied. (vice-versa is also true)
#invert_match = false
## The handling method for quoted text (defaults to 'ignore').
## The following methods are available:
## ignore -- do not consider quotation (default)
## single-quotes -- consider text quoted by single quotes (')
## double-quotes -- consider text quoted by double quotes (")
## backticks -- consider text quoted by backticks (`)
## When handling quotes, escaped quotes (e.g. \") are handled correctly.
#quotation = "ignore"
## The preserve_newline option can be true or false (defaults to false).
## If true, the newline character is preserved for multiline elements,
## this is useful to preserve message-structure e.g. for logging outputs.
#preserve_newline = false
#After the specified timeout, this plugin sends the multiline event even if no new pattern is found to start a new event. The default is 5s.
#timeout = 5s
Google Cloud Monitoring
[[outputs.stackdriver]]
## GCP Project
project = "project-id"
## Quota Project
## Specifies the Google Cloud project that should be billed for metric ingestion.
## If omitted, the quota is charged to the service account’s default project.
## This is useful when sending metrics to multiple projects using a single service account.
## The caller must have the `serviceusage.services.use` permission on the specified project.
# quota_project = ""
## The namespace for the metric descriptor
## This is optional and users are encouraged to set the namespace as a
## resource label instead. If omitted it is not included in the metric name.
namespace = "telegraf"
## Metric Type Prefix
## The DNS name used with the metric type as a prefix.
# metric_type_prefix = "custom.googleapis.com"
## Metric Name Format
## Specifies the layout of the metric name, choose from:
## * path: 'metric_type_prefix_namespace_name_key'
## * official: 'metric_type_prefix/namespace_name_key/kind'
# metric_name_format = "path"
## Metric Data Type
## By default, telegraf will use whatever type the metric comes in as.
## However, for some use cases, forcing int64, may be preferred for values:
## * source: use whatever was passed in
## * double: preferred datatype to allow queries by PromQL.
# metric_data_type = "source"
## Tags as resource labels
## Tags defined in this option, when they exist, are added as a resource
## label and not included as a metric label. The values from tags override
## the values defined under the resource_labels config options.
# tags_as_resource_label = []
## Custom resource type
# resource_type = "generic_node"
## Override metric type by metric name
## Metric names matching the values here, globbing supported, will have the
## metric type set to the corresponding type.
# metric_counter = []
# metric_gauge = []
# metric_histogram = []
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of
## the table
## Additional resource labels
# [outputs.stackdriver.resource_labels]
# node_id = "$HOSTNAME"
# namespace = "myapp"
# location = "eu-north0"
Input and output integration examples
Tail
-
Real-Time Server Health Monitoring: Implement the Tail plugin to parse web server access logs in real-time, providing immediate visibility into user activity, error rates, and performance metrics. By visualizing this log data, operations teams can quickly identify and respond to spikes in traffic or errors, enhancing system reliability and user experience.
-
Centralized Log Management: Utilize the Tail plugin to aggregate logs from multiple sources across a distributed system. By configuring each service to send its logs to a centralized location via the Tail plugin, teams can simplify log analysis and ensure that all relevant data is accessible from a single interface, streamlining troubleshooting processes.
-
Security Incident Detection: Use this plugin to monitor authentication logs for unauthorized access attempts or suspicious activity. By setting up alerts on certain log messages, teams can leverage this plugin to enhance security postures and respond promptly to potential security threats, reducing the risk of breaches and increasing overall system integrity.
-
Dynamic Application Performance Insights: Integrate with analytics tools to create real-time dashboards that display application performance metrics based on log data. This setup not only helps developers diagnose bottlenecks and inefficiencies but also allows for proactive performance tuning and resource allocation, optimizing application behavior under varying loads.
Google Cloud Monitoring
-
Multi-Project Metric Aggregation: Use this plugin to send aggregated metrics from various applications across different projects into a single Google Cloud Monitoring project. This use case helps centralize metrics for teams managing multiple applications, providing a unified view for performance monitoring and enhancing decision-making. By configuring different quota projects for billing, organizations can ensure proper cost management while benefiting from a consolidated monitoring strategy.
-
Anomaly Detection Setup: Integrate the plugin with a machine learning-based analytics tool that identifies anomalies in the collected metrics. Using the historical data provided by the plugin, the tool can learn normal baseline behavior and promptly alert the operations team when unusual patterns arise, enabling proactive troubleshooting and minimizing service disruptions.
-
Dynamic Resource Labeling: Implement dynamic tagging by utilizing the tags_as_resource_label option to adaptively attach resource labels based on runtime conditions. This setup allows metrics to provide context-sensitive information, such as varying environmental parameters or operational states, enhancing the granularity of monitoring and reporting without changing the fundamental metric structure.
-
Custom Metric Visualization Dashboards: Leverage the data collected by the Google Cloud Monitoring output plugin to feed a custom metrics visualization dashboard using a third-party framework. By visualizing metrics in real-time, teams can achieve better situational awareness, notably by correlating different metrics, improving operational decision-making, and streamlining performance management workflows.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration