Webhooks and Apache Inlong Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Webhooks plugin allows Telegraf to receive and process HTTP requests from various external services via webhooks. This plugin enables users to collect real-time metrics and events and integrate them into their monitoring solutions.
The Inlong plugin connects Telegraf to Apache InLong, enabling seamless transmission of collected metrics to an InLong instance.
Integration details
Webhooks
This Telegraf plugin is designed to act as a webhook listener by starting an HTTP server that registers multiple webhook endpoints. It provides a way to collect events from various services by capturing HTTP requests sent to defined paths. Each service can be configured with its specific authentication details and request handling options. The plugin stands out by allowing integration with any Telegraf output plugin, making it versatile for event-driven architectures. By enabling efficient reception of events, it opens possibilities for real-time monitoring and response systems, essential for modern applications that need instantaneous event handling and processing.
Apache Inlong
This Inlong plugin is designed to publish metrics to an Apache InLong instance, which facilitates the management of data streams in a scalable manner. Apache InLong provides a robust framework for efficient data transmission between various components in a distributed environment. By leveraging this plugin, users can effectively route and transmit metrics collected by Telegraf to their InLong data-proxy infrastructure. As a key component in a data pipeline, the Inlong Output Plugin helps ensure that data is consistently formatted, streamed correctly, and managed in compliance with the standards set by Apache InLong, making it an essential tool for organizations looking to enhance their data analytics and reporting capabilities.
Configuration
Webhooks
[[inputs.webhooks]]
## Address and port to host Webhook listener on
service_address = ":1619"
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
[inputs.webhooks.filestack]
path = "/filestack"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.github]
path = "/github"
# secret = ""
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.mandrill]
path = "/mandrill"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.rollbar]
path = "/rollbar"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.papertrail]
path = "/papertrail"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.particle]
path = "/particle"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.artifactory]
path = "/artifactory"
Apache Inlong
[[outputs.inlong]]
## Manager URL to obtain the Inlong data-proxy IP list for sending the data
url = "http://127.0.0.1:8083"
## Unique identifier for the data-stream group
group_id = "telegraf"
## Unique identifier for the data stream within its group
stream_id = "telegraf"
## Data format to output.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
# data_format = "influx"
Input and output integration examples
Webhooks
-
Real-time Notifications from Github: Integrate the Webhooks Input Plugin with Github to receive real-time notifications for events such as pull requests, commits, and issues. This allows development teams to instantly monitor crucial changes and updates in their repositories, improving collaboration and response times.
-
Automated Alerting with Rollbar: Use this plugin to listen for errors reported from Rollbar, enabling teams to react swiftly to bugs and issues in production. By forwarding these alerts into a centralized monitoring system, teams can prioritize their responses based on severity and prevent escalated downtime.
-
Performance Monitoring from Filestack: Capture events from Filestack to track file uploads, transformations, and errors. This setup helps businesses understand user interactions with file management processes, optimize workflow, and ensure high availability of file services.
-
Centralized Logging with Papertrail: Tie in all logs sent to Papertrail through webhooks, allowing you to consolidate your logging strategy. With real-time log forwarding, teams can analyze trends and anomalies efficiently, ensuring they maintain visibility over critical operations.
Apache Inlong
-
Real-time Metrics Monitoring: Integrating the Inlong plugin with a real-time monitoring dashboard allows teams to visualize system performance continuously. As metrics flow from Telegraf to InLong, organizations can create dynamic panels in their monitoring tools, providing instant insights into system health, resource utilization, and performance bottlenecks. This setup encourages proactive management and swift identification of potential issues before they escalate into critical failures.
-
Centralized Data Processing: Use the Inlong plugin to send Telegraf metrics to a centralized data processing pipeline that processes large volumes of data for analysis. By directing all collected metrics through Apache InLong, businesses can streamline their data workflows and ensure consistency in data formatting and processing. This centralized approach facilitates easier data integration with business intelligence tools and enhances decision-making through consolidated data insights.
-
Integration with Machine Learning Models: By feeding metrics collected through the Inlong Output Plugin into machine learning models, teams can enhance predictive analytics capabilities. For instance, metrics can be analyzed to predict system failures or performance trends. This application allows organizations to leverage historical data and infer future performance, helping them optimize resource allocation and minimize downtime using automated alerts based on model predictions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration