Webhooks and Apache Hudi Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Webhooks and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Webhooks plugin allows Telegraf to receive and process HTTP requests from various external services via webhooks. This plugin enables users to collect real-time metrics and events and integrate them into their monitoring solutions.

Writes metrics to Parquet files via Telegraf’s Parquet output plugin, preparing them for ingestion into Apache Hudi’s lakehouse architecture.

Integration details

Webhooks

This Telegraf plugin is designed to act as a webhook listener by starting an HTTP server that registers multiple webhook endpoints. It provides a way to collect events from various services by capturing HTTP requests sent to defined paths. Each service can be configured with its specific authentication details and request handling options. The plugin stands out by allowing integration with any Telegraf output plugin, making it versatile for event-driven architectures. By enabling efficient reception of events, it opens possibilities for real-time monitoring and response systems, essential for modern applications that need instantaneous event handling and processing.

Apache Hudi

This configuration leverages Telegraf’s Parquet plugin to serialize metrics into columnar Parquet files suitable for downstream ingestion by Apache Hudi. The plugin writes metrics grouped by metric name into files in a specified directory, buffering writes for efficiency and optionally rotating files on timers. It considers schema compatibility—metrics with incompatible schemas are dropped—ensuring consistency. Apache Hudi can then consume these Parquet files via tools like DeltaStreamer or Spark jobs, enabling transactional ingestion, time-travel queries, and upserts on your time series data.

Configuration

Webhooks

[[inputs.webhooks]]
  ## Address and port to host Webhook listener on
  service_address = ":1619"

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

  [inputs.webhooks.filestack]
    path = "/filestack"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.github]
    path = "/github"
    # secret = ""

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.mandrill]
    path = "/mandrill"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.rollbar]
    path = "/rollbar"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.papertrail]
    path = "/papertrail"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.particle]
    path = "/particle"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.artifactory]
    path = "/artifactory"

Apache Hudi

[[outputs.parquet]]
  ## Directory to write parquet files in. If a file already exists the output
  ## will attempt to continue using the existing file.
  directory = "/var/lib/telegraf/hudi_metrics"

  ## File rotation interval (default is no rotation)
  # rotation_interval = "1h"

  ## Buffer size before writing (default is 1000 metrics)
  # buffer_size = 1000

  ## Optional: compression codec (snappy, gzip, etc.)
  # compression_codec = "snappy"

  ## When grouping metrics, each metric name goes to its own file
  ## If a metric’s schema doesn’t match the existing schema, it will be dropped

Input and output integration examples

Webhooks

  1. Real-time Notifications from Github: Integrate the Webhooks Input Plugin with Github to receive real-time notifications for events such as pull requests, commits, and issues. This allows development teams to instantly monitor crucial changes and updates in their repositories, improving collaboration and response times.

  2. Automated Alerting with Rollbar: Use this plugin to listen for errors reported from Rollbar, enabling teams to react swiftly to bugs and issues in production. By forwarding these alerts into a centralized monitoring system, teams can prioritize their responses based on severity and prevent escalated downtime.

  3. Performance Monitoring from Filestack: Capture events from Filestack to track file uploads, transformations, and errors. This setup helps businesses understand user interactions with file management processes, optimize workflow, and ensure high availability of file services.

  4. Centralized Logging with Papertrail: Tie in all logs sent to Papertrail through webhooks, allowing you to consolidate your logging strategy. With real-time log forwarding, teams can analyze trends and anomalies efficiently, ensuring they maintain visibility over critical operations.

Apache Hudi

  1. Transactional Lakehouse Metrics: Buffer and write Web service metrics as Parquet files for DeltaStreamer to ingest into Hudi, enabling upserts, ACID compliance, and time-travel on historical performance data.

  2. Edge Device Batch Analytics: Telegraf running on IoT gateways writes metrics to Parquet locally, where periodic Spark jobs ingest them into Hudi for long-term analytics and traceability.

  3. Schema-Enforced Abnormal Metric Handling: Use Parquet plugin’s strict schema-dropping behavior to prevent malformed or unexpected metric changes. Hudi ingestion then guarantees consistent schema and data quality in downstream datasets.

  4. Data Platform Integration: Store Telegraf metrics as Parquet files in an S3/ADLS landing zone. Hudi’s Spark-based ingestion pipeline then loads them into a unified, queryable lakehouse with business events and logs.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration