Webhooks and Parquet Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Webhooks plugin allows Telegraf to receive and process HTTP requests from various external services via webhooks. This plugin enables users to collect real-time metrics and events and integrate them into their monitoring solutions.
This plugin writes metrics to parquet files, utilizing a schema based on the metrics grouped by name. It supports file rotation and buffered writing for optimal performance.
Integration details
Webhooks
This Telegraf plugin is designed to act as a webhook listener by starting an HTTP server that registers multiple webhook endpoints. It provides a way to collect events from various services by capturing HTTP requests sent to defined paths. Each service can be configured with its specific authentication details and request handling options. The plugin stands out by allowing integration with any Telegraf output plugin, making it versatile for event-driven architectures. By enabling efficient reception of events, it opens possibilities for real-time monitoring and response systems, essential for modern applications that need instantaneous event handling and processing.
Parquet
The Parquet output plugin for Telegraf writes metrics to parquet files, which are columnar storage formats optimized for analytics. By default, this plugin groups metrics by their name, writing them to a single file. If a metric’s schema does not align with existing schemas, those metrics are dropped. The plugin generates an Apache Arrow schema based on all grouped metrics, ensuring that the schema reflects the union of all fields and tags. It operates in a buffered manner, meaning it temporarily holds metrics in memory before writing them to disk for efficiency. Parquet files require proper closure to ensure readability, and this is crucial when using the plugin, as improper closure can lead to unreadable files. Additionally, the plugin supports file rotation after specific time intervals, preventing overwrites of existing files and schema conflicts when a file with the same name already exists.
Configuration
Webhooks
[[inputs.webhooks]]
## Address and port to host Webhook listener on
service_address = ":1619"
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
[inputs.webhooks.filestack]
path = "/filestack"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.github]
path = "/github"
# secret = ""
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.mandrill]
path = "/mandrill"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.rollbar]
path = "/rollbar"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.papertrail]
path = "/papertrail"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.particle]
path = "/particle"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.artifactory]
path = "/artifactory"
Parquet
[[outputs.parquet]]
## Directory to write parquet files in. If a file already exists the output
## will attempt to continue using the existing file.
# directory = "."
## Files are rotated after the time interval specified. When set to 0 no time
## based rotation is performed.
# rotation_interval = "0h"
## Timestamp field name
## Field name to use to store the timestamp. If set to an empty string, then
## the timestamp is omitted.
# timestamp_field_name = "timestamp"
Input and output integration examples
Webhooks
-
Real-time Notifications from Github: Integrate the Webhooks Input Plugin with Github to receive real-time notifications for events such as pull requests, commits, and issues. This allows development teams to instantly monitor crucial changes and updates in their repositories, improving collaboration and response times.
-
Automated Alerting with Rollbar: Use this plugin to listen for errors reported from Rollbar, enabling teams to react swiftly to bugs and issues in production. By forwarding these alerts into a centralized monitoring system, teams can prioritize their responses based on severity and prevent escalated downtime.
-
Performance Monitoring from Filestack: Capture events from Filestack to track file uploads, transformations, and errors. This setup helps businesses understand user interactions with file management processes, optimize workflow, and ensure high availability of file services.
-
Centralized Logging with Papertrail: Tie in all logs sent to Papertrail through webhooks, allowing you to consolidate your logging strategy. With real-time log forwarding, teams can analyze trends and anomalies efficiently, ensuring they maintain visibility over critical operations.
Parquet
-
Data Lake Ingestion: Utilize the Parquet plugin to store metrics from various sources into a data lake. By writing metrics in parquet format, you establish a standardized and efficient way to manage time-series data, enabling faster querying capabilities and seamless integration with analytics tools like Apache Spark or AWS Athena. This setup can significantly improve data retrieval times and analysis workflows.
-
Long-term Storage of Metrics: Implement the Parquet plugin in a monitoring setup where metrics are collected over time from multiple applications. This allows for long-term storage of performance data in a compact format, making it cost-effective to store vast amounts of historical data while preserving the ability for quick retrieval and analysis later on. By archiving metrics in parquet files, organizations can maintain compliance and create detailed reports from historical performance trends.
-
Analytics and Reporting: After writing metrics to parquet files, leverage tools like Apache Arrow or PyArrow to perform complex analytical queries directly on the files without needing to load all the data into memory. This can enhance reporting capabilities, allowing teams to generate insights and visualization from large datasets efficiently, thereby improving decision-making processes based on accurate, up-to-date performance metrics.
-
Integrating with Data Warehouses: Use the Parquet plugin as part of a data integration pipeline that feeds into a modern data warehouse. By converting metrics to parquet format, the data can be easily ingested by systems like Snowflake or Google BigQuery, enabling powerful analytics and business intelligence capabilities that drive actionable insights from the collected metrics.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration