Wireguard and M3DB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Wireguard and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin collects and reports statistics from the local Wireguard server, providing insights into its interfaces and peers.

This plugin allows Telegraf to stream metrics to M3DB using the Prometheus Remote Write protocol, enabling scalable ingestion through the M3 Coordinator.

Integration details

Wireguard

The Wireguard plugin collects statistics on the local Wireguard server using the wgctrl library. It reports gauge metrics for Wireguard interface device(s) and its peers. This enables monitoring of various parameters related to Wireguard functionality, enhancing an administrator’s capability to assess the performance and status of their Wireguard setup. The metrics collected can lead to proactive management of the network interfaces, aiding in detecting and resolving issues before they impact service availability.

M3DB

This configuration uses Telegraf’s HTTP output plugin with prometheusremotewrite format to send metrics directly to M3DB through the M3 Coordinator. M3DB is a distributed time series database designed for scalable, high-throughput metric storage. It supports ingestion of Prometheus remote write data via its Coordinator component, which manages translation and routing into the M3DB cluster. This approach enables organizations to collect metrics from systems that aren’t natively instrumented for Prometheus (e.g., Windows, SNMP, legacy systems) and ingest them efficiently into M3’s long-term, high-performance storage engine. The setup is ideal for high-scale observability stacks with Prometheus compatibility requirements.

Configuration

Wireguard

[[inputs.wireguard]]
  ## Optional list of Wireguard device/interface names to query.
  ## If omitted, all Wireguard interfaces are queried.
  # devices = ["wg0"]

M3DB

# Configuration for sending metrics to M3
[outputs.http]
  ## URL is the address to send metrics to
  url = "https://M3_HOST:M3_PORT/api/v1/prom/remote/write"

  ## HTTP Basic Auth credentials
  username = "admin"
  password = "password"

  ## Data format to output.
  data_format = "prometheusremotewrite"

  ## Outgoing HTTP headers
  [outputs.http.headers]
    Content-Type = "application/x-protobuf"
    Content-Encoding = "snappy"
    X-Prometheus-Remote-Write-Version = "0.1.0"

Input and output integration examples

Wireguard

  1. Network Performance Monitoring: Monitor the performance metrics of your Wireguard interfaces, allowing you to track bandwidth usage and identify potential bottlenecks in real-time. By integrating these statistics into your existing monitoring system, network administrators can gain insights into the efficiency of their VPN configuration and make data-driven adjustments.

  2. Peer Health Checks: Implement health checks for Wireguard peers by monitoring the last handshake time and traffic metrics. If a peer shows a significant drop in RX/TX bytes or hasn’t completed a handshake in a timely manner, alerts can be triggered to address potential connectivity issues proactively.

  3. Dynamic Resource Allocation: Use the metrics collected by the Wireguard plugin to dynamically allocate or adjust network resources based on current bandwidth usage and peer activity. For instance, when a peer is heavily utilized, administrators can respond by allocating additional resources or adjusting configurations to optimize performance accordingly.

  4. Historical Data Analysis: Aggregate data over time to analyze historical trends in Wireguard device performance. By storing these metrics in a time-series database, teams can visualize long-term trends, assess the impact of configuration changes, and drive strategic decisions regarding network management.

M3DB

  1. Large-Scale Cloud Infrastructure Monitoring: Deploy Telegraf agents across thousands of virtual machines and containers to collect metrics and stream them into M3DB through the M3 Coordinator. This provides reliable, long-term visibility with minimal storage overhead and high availability.

  2. Legacy System Metrics Ingestion: Use Telegraf to gather metrics from older systems that lack native Prometheus exporters (e.g., Windows servers, SNMP devices) and forward them to M3DB via remote write. This bridges modern observability workflows with legacy infrastructure.

  3. Centralized App Telemetry Aggregation: Collect application-specific telemetry using Telegraf’s plugin ecosystem (e.g., exec, http, jolokia) and push it into M3DB for centralized storage and query via PromQL. This enables unified analytics across diverse data sources.

  4. Hybrid Cloud Observability: Install Telegraf agents on-prem and in the cloud to collect and remote-write metrics into a centralized M3DB cluster. This ensures consistent visibility across environments while avoiding the complexity of running Prometheus federation layers.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration