Zipkin and Databricks Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Zipkin Input Plugin allows for the collection of tracing information and timing data from microservices. This capability is essential for diagnosing latency troubles within complex service-oriented environments.
Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.
Integration details
Zipkin
This plugin implements the Zipkin HTTP server to gather trace and timing data necessary for troubleshooting latency issues in microservice architectures. Zipkin is a distributed tracing system that helps gather timing data across various microservices, allowing teams to visualize the flow of requests and identify bottlenecks in performance. The plugin offers support for input traces in JSON or thrift formats based on the specified Content-Type. Additionally, it utilizes span metadata to track the timing of requests, enhancing the observability of applications that adhere to the OpenTracing standard. As an experimental feature, its configuration and schema may evolve over time to better align with user requirements and advancements in distributed tracing methodologies.
Databricks
This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a statement
field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a PUT ... INTO /Volumes/...
command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the warehouse_id
at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and COPY INTO
are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.
Configuration
Zipkin
[[inputs.zipkin]]
## URL path for span data
# path = "/api/v1/spans"
## Port on which Telegraf listens
# port = 9411
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
Databricks
[[outputs.http]]
## Databricks SQL Statement Execution API endpoint
url = "https://{{ env "DATABRICKS_HOST" }}/api/2.0/sql/statements"
## Use POST to submit each Telegraf batch as a SQL request
method = "POST"
## Personal-access token (PAT) for workspace or service principal
headers = { Authorization = "Bearer {{ env "DATABRICKS_TOKEN" }}" }
## Send JSON that wraps the metrics batch in a SQL INSERT (or PUT into a Volume)
content_type = "application/json"
## Serialize metrics as JSON so they can be embedded in the SQL statement
data_format = "json"
json_timestamp_units = "1ms"
## Build the request body. Telegraf replaces the template variables at runtime.
## Example inserts a row per metric into a Unity-Catalog table.
body_template = """
{
\"statement\": \"INSERT INTO ${TARGET_TABLE} VALUES {{range .Metrics}}(from_unixtime({{.timestamp}}/1000), {{.fields.usage}}, '{{.tags.host}}'){{end}}\",
\"warehouse_id\": \"${WAREHOUSE_ID}\"
}
"""
## Optional: add batching limits or TLS settings
# batch_size = 500
# timeout = "10s"
Input and output integration examples
Zipkin
-
Latency Monitoring in Microservices: Use the Zipkin Input Plugin to capture and analyze tracing data from a microservices architecture. By visualizing the request flow and pinpointing latency sources, development teams can optimize service interactions, improve response times, and ensure a smoother user experience across services.
-
Performance Optimization in Essential Services: Integrate the plugin within critical services to monitor not only the response times but also track specific annotations that could highlight performance issues. The ability to gather span data can help prioritize areas needing performance enhancements, leading to targeted improvements.
-
Dynamic Service Dependency Mapping: With the collected trace data, automatically map service dependencies and visualize them in dashboards. This helps teams understand how different services interact and the impact of failures or slowdowns, ultimately leading to better architectural decisions and faster resolutions of issues.
-
Anomaly Detection in Service Latency: Combine Zipkin data with machine learning models to detect unusual patterns in service latencies and request processing times. By automatically identifying anomalies, operations teams can respond proactively to emerging issues before they escalate into critical failures.
Databricks
- Edge-to-Lakehouse Telemetry Pipe: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.
- Blue-Green CI/CD Rollout Metrics: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by
deployment_id
, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions. - SaaS Usage Metering: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.
- Security Forensics Lake: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using
PUT
commands, then runCOPY INTO
for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration